

ESTUDOS SIMULADOS DE ADSORÇÃO DE CHUMBO COM A MACRÓFITA AQUÁTICA CABOMBA CAROLINIANA COMO BIOSSORVENTE

Adriano Cosme Pereira Lima Tahise Neiva Campodonio José Luiz Cunha Cordeiro Taise Bomfim de Jesus Suzana Modesto de Oliveira Brito

RESUMO

Dentre os elementos que contaminam os corpos hídricos, o chumbo se destaca pois pode se dissolver na coluna d'água, acumular nos sedimentos e ser incorporado na matéria orgânica em suspensão ou pela biota aquática. Este trabalho estuda a adsorção de chumbo pela da biomassa de Cabomba caroliniana, para viabilizar seu potencial como biossorvente no tratamento de áreas contaminadas. O material foi coletado manualmente e seco em estufa, triturado e peneirado para ajuste de granulometria. A caracterização do material foi feita por difratometria de raios x, análise térmica, acidez e basicidade superficial e pH de carga zero. Os testes de adsorção foram feitos em batelada, variando-se a concentração inicial, o tempo de contato e a temperatura. A cabomba se mostrou um adsorvente promissor para Pb(II), com capacidade de adsorção de Langmuir de 0,18 mg de Pb(II) por grama de adsorvente. A cinética do processo é descrita pela equação de pseudo-segunda ordem e a difusão na solução é a etapa limitante da velocidade do processo. O processo é espontâneo em temperaturas próximas a ambiente. Os resultados termodinâmicos também indicam um processo de adsorção física.

PALAVRAS-CHAVE: Bioadsorção. Macrófitas Aquáticas. Adsorção de Chumbo.

1. INTRODUÇÃO

A água tem diversos usos desde o surgimento da humanidade e sempre foi determinante não só para a sobrevivência dos seres vivos, como também para o desenvolvimento econômico. Contudo, diversos estudos têm revelado que nos últimos anos a qualidade ambiental das bacias hidrográficas tem sido comprometida pelas atividades antrópicas sem planejamento, o que tem contribuído para a degradação da qualidade e disponibilidade de água (ALMEIDA-FURANO, 2010; TORRES, 2013; SILVA, 2015).

Análises de compartimentos aquáticos têm constatado elementos químicos acima dos limites permitidos pela legislação nos ecossistemas aquáticos (RAI, 2010; TRINDADE, 2012; DE JESUS, 2015). Os maiores problemas de alguns elementos químicos nos diferentes compartimentos ambientais são a toxicidade e permanência no ambiente, podendo ser transferidos e acumulados dentro da cadeia trófica.

Dentre os elementos químicos que desaguam nos corpos hídricos, provenientes das atividades antrópicas, o chumbo se destaca pelo poder de se dissolver na coluna d'água,

acumular nos sedimentos, ser incorporado na matéria orgânica em suspensão ou pela biota aquática, podendo ser transferido para a cadeia alimentar, prejudicando a saúde, a segurança e o bem-estar da população e dos organismos aquáticos (RAI, 2010; ESPINOZA-QUIÑONES, 2009; WU, 2012).

A biorremoção de metais pesados é uma das tecnologias mais promissoras para purificação de corpos d'água, com a vantagem do uso de biomateriais de baixo custo e ambientalmente sustentáveis. Dentro do grupo dos vegetais aquáticos, encontram-se as macrófitas, que exercem grande importância ambiental e ecológica, tanto em ambientes aquáticos como terrestres, pois funcionam como refúgio de aves e predadores, servem de substrato para algas e invertebrados, são fornecedores de alimentos para peixes e anfíbios, além de participar do equilíbrio dos ciclos biogeoquímicos (SHABANI, 2012).

Entretanto, a grande produção de biomassa vegetal gerada por essas espécies pode gerar efeitos negativos para o corpo d'água, como a formação de lodo, redução da profundidade, aumento da demanda de oxigênio, liberação de mau cheiro, redução da circulação das águas e falta de luminosidade, contribuindo com isso para a eutrofização, inviabilizando a navegação, a pesca e as atividades recreativas (BRANCO, 1986). O uso dessa biomassa como adsorvente em processos de adsorção externos ao meio aquático pode ser uma forma interessante de aproveitar o excesso de plantas no ambiente e ainda remover metais pesados de efluentes poluídos.

Diversos métodos têm sido propostos na literatura para remoção de chumbo de soluções aquosas, como adsorção, fotocatálise, filtração com membranas, eletrólise, entre outros. A adsorção é considerada uma das melhores técnicas para remoção de metais pesados, mas o alto custo de alguns adsorventes limita o uso deste procedimento (SILVA, 2018).

Para ser considerado como de baixo custo, um adsorvente deve ter alta seletividade, facilitar a separação rápida, possuir cinética e termodinâmica favoráveis ao processo de adsorção e estar disponível como subproduto de processos agrícolas ou industriais, ou como material natural em grande quantidade (TRIPATHI, 2015; BABEL, 2003).

Materiais lignocelulósicos parecem se comportar como bons adsorventes para diversos poluentes e diferentes tratamentos físicos e/ou químicos têm sido aplicados a esses materiais para melhorar sua capacidade de adsorção (SABA, 2016). Esses biossorventes são de origem natural e geralmente estão disponíveis em grande quantidade, o que torna o processo de biossorção atraente do ponto de vista econômico (JACQUES, 2007).

Para Espinoza-Quiñones *et al.* (2009), a técnica de adsorção de metais pesados por plantas aquáticas não vivas é uma alternativa viável para a remoção de poluentes de ambientes aquáticos. O uso de macrófitas aquáticas como adsorvente para metais pesados é considerado eficiente por diversos autores (MÓDENES, 2009). Além disso, reduz custos e gera menos rejeitos, com a grande vantagem de controlar o excesso de plantas nos ecossistemas aquáticos, minimizando os impactos negativos sobre a pesca, geração de energia, navegação e lazer.

A *Cabomba caroliniana* é uma espécie de macrófita aquática pertencente à família Cabombaceae, que é produzida em grandes quantidades em águas doces e ambientes lênticos, ocorrendo desde as regiões de climas temperados até as de climas tropicais. Descrita por A. Gray é a mais cultivada no continente americano, sendo conhecida popularmente como cabomba-verde. Segundo Lima *et al.* (2014) a cabomba é uma espécie capaz de absorver e acumular chumbo nos seus tecidos vegetais vivos.

O objetivo deste trabalho foi avaliar a capacidade de adsorção de chumbo pela da biomassa inativa de *Cabomba caroliniana*, em ambiente simulado de bancada para viabilizar seu potencial como biossorvente no tratamento de áreas contaminadas.

2. METODOLOGIA

2.1. Coleta e preparação do bioadsorvente

O material foi coletado manualmente e acondicionado em sacos plásticos perfurados para proporcionar o escoamento da água e evitar a decomposição anaeróbica. As amostras foram inicialmente lavadas em água corrente para a eliminação de detritos e matéria orgânica. Após a lavagem, foram colocadas para secar ao sol, em temperatura ambiente. Em seguida, foram secas em estufa com circulação de ar a 65 C° por 48 horas. Após esse período, todo o material foi triturado em moinho do tipo IKA A11 Basic S32 e peneirado em malha de 2,0 mm. Não foram feitos outros tratamentos no material.

2.2. Caracterização física do adsorvente

Os difratogramas de Raios-X das amostras foram obtidos com um equipamento Shimadzu XRD-6000, operando com radiação CuK α em voltagem de 40 kV, corrente de 30 mA e monocromador de grafite, na região de 5 – 80° 20 com velocidade de 2°.min⁻¹.

As análises de TG e DTA foram feitas em um equipamento Shimadzu TGA-60H, de 25 a 1000°C com taxa de aquecimento de 10°C.min⁻¹ sob fluxo de ar sintético de 50 mL/min.

2.3. Reagentes e soluções

Para os testes de adsorção foram preparadas soluções contendo íons Pb²⁺ na faixa de concentrações de 0,1 mg.L⁻¹ a 1,0 mg.L⁻¹, a partir de solução padrão de 1000 mg.L⁻¹ Specsol. Essas soluções foram usadas tanto para os testes de adsorção como para as curvas de calibração.

2.4. Testes de adsorção

Alíquotas de 25 mL das soluções de Pb²⁺ de concentração variando entre 0,1 mg.L⁻¹ e 1,0 mg.L⁻¹ foram colocadas em erlenmeyer de 125 mL e adicionou-se 0,5 g do biossorvente. As amostras foram então submetidas à agitação à temperatura de 25°C, por períodos de 2, 6, 12 e 24 horas.

Após cada período, as soluções foram filtradas e a concentração final de Pb²⁺ foi determinada por espectrometria de absorção atômica de chama (FAAS) em equipamento Avanta GBC, modelo HG-3000 com chama ar-acetileno e com lâmpada de cátodo-oco de Pb, no comprimento de onda de 217 nm.

2.5. pH das suspensões de adsorvente

O procedimento foi o mesmo adotado por Al-Degs *et al* (2000). As amostras foram agitadas em água destilada numa proporção de 10% (m/v) por 3 horas a temperatura ambiente e o pH foi medido com um potenciômetro MARTE MB-10 e um eletrodo de vidro.

2.6. Acidez e basicidade superficiais

Os estudos de acidez e basicidade superficiais foram feitos de acordo com Al-Degs *et al.* (2000). Para determinação da acidez superficial as amostras foram agitadas em 10 mL de uma solução 0,01 mol.L⁻¹ de hidróxido de sódio por 24 horas a temperatura ambiente. Após esse período as amostras foram filtradas e o NaOH remanescente na solução foi titulado com ácido clorídrico 0,01 mol.L⁻¹ utilizando um potenciômetro MARTE MB-10 e um eletrodo de vidro. A basicidade da superfície foi determinada de modo similar, usando uma solução de HCl 0,01 mol.L⁻¹ para agitação. O ácido residual foi titulado com NaOH 0,01 mol.L⁻¹. Os resultados foram expressos em mmol de H⁺ ou OH⁻ por grama de adsorvente.

2.7. pH do ponto de carga zero (pH_{PZC})

O pH de carga zero das amostras foi determinado conforme descrito em Brito *et al* (2010). Doze frascos contendo soluções de pH na faixa de 2 a 13 (pH₀) e 0,1g de adsorvente foram agitados por 24 horas a temperatura ambiente e o pH final foi medido com um potenciômetro MARTE MB-10 e um eletrodo de vidro. A diferença entre o pH final e o pH

inicial (ΔpH) foi plotada versus o pH inicial e o ponto onde $\Delta pH = 0$ foi tomado como pH do ponto de carga zero (pH_{PZC}).

2.8. Efeito do pH da solução na adsorção

Para estudar o efeito do pH na adsorção, o pH das soluções de íons Pb²⁺ foi ajustado na faixa de 2 a 12 através da adição de NaOH 0,1 mol.L⁻¹ ou HCl 0,1 mol.L⁻¹. As soluções, com concentração inicial de 0,1 a 1,0 mg.L⁻¹, foram então agitadas com 0,5 g de adsorvente, à temperatura ambiente por 24 horas. As concentrações finais foram medidas por espectrometria de absorção atômica de chama em equipamento Avanta GBC, modelo HG-3000 com chama aracetileno e lâmpada de cátodo-oco de Pb, no comprimento de onda de 217 nm. O pH foi medido usando um potenciômetro MARTE MB-10 com eletrodo de vidro.

3. RESULTADOS E DISCUSSÃO

3.1. Difratograma de raios-X

O difratograma de raios x da cabomba é mostrado na figura 1. O difratograma é típico de materiais vegetais, com baixa cristalinidade.

O ombro a cerca de 16°20 pode ser atribuído a sobreposição dos picos correspondentes aos planos (1,-1,0) e (1,1,0) da celulose em amostras com alto conteúdo de material não cristalino, como lignina e hemicelulose, conforme já reportado por Tserki et al (2005) e Ghali et al (2009) [24]. Os picos a 22° 20 e 34,9° 20 correspondem aos planos (0,0,2) e (0,4,0) da celulose, respectivamente (MARTIN, 2009; PARK, 2010). Esses resultados mostram que o material é formado principalmente por lignina e celulose, como esperado de material vegetal.

A figura 2 mostra o resultado da análise termogravimétrica da cabomba-verde em atmosfera de ar sintético.

Figura 2: Análise termogravimétrica da cabomba verde em atmosfera de ar sintético.

Pode-se observar a presença de quatro regiões de perda de massa no gráfico. A região I, até aproximadamente 120°C pode ser atribuída a evaporação de água. A região II, que vai de 120 a 370°C, com um máximo em 300°C, pode ser atribuída a decomposição da celulose e hemicelulose em ar (SILVA, 2016; YANG, 2007). A região III, que vai de aproximadamente 370°C até 670°C, com um máximo em 470°C, pode ser atribuída à decomposição da lignina (PATHAK, 2016). A região IV do gráfico corresponde ao material totalmente transformado em cinzas.

3.3. Estudos de acidez e basicidade da superfície

A tabela 1 mostra os resultados de acidez e basicidade superficiais para a amostra de cabomba-verde.

Acidez (mmolH ⁺ /g)	0,82
Basicidade (mmolOH ⁻ /g)	0,58
Fonte: Autoria própria (2022).

 Tabela 1: Acidez e basicidade da superfície da amostra de cabomba-verde.

A amostra apresenta maior quantidade de sítios ácidos, indicando que pode ser um bom adsorvente para poluentes catiônicos como sugerido por Pathak *et al.* (2016).

3.4. pH do ponto de carga zero

O pH do ponto de carga zero dá indicações sobre o grau de ionização da superfície do adsorvente e sua possível interação com o adsorbato. A Figura 3 mostra os resultados da determinação do pH do ponto de carga zero para a amostra de cabomba-verde.

Figura 3: Determinação do pH do ponto de carga zero para a amostra de cabomba-verde.

Fonte: Autoria própria (2022).

Geralmente a superfície do adsorvente se torna positiva se aceitar prótons da solução ou negativa se perder prótons para a solução. O pH onde a superfície do adsorvente é neutra é representado como pH_{PZC} (CEROVIC, 2007). O pH do ponto de carga zero para a cabomba verde é foi encontrado como sendo 7,20. Isso significa que em pH > 7,20 a superfície da cabomba verde é negativamente carregada e em pH < 7,20 a superfície se torna carregada positivamente. Dessa forma, um aumento no pH da solução deve favorecer a adsorção de íons Pb(II).

3.5. Efeito do pH da solução na adsorção

A variação da remoção de chumbo com o pH é mostrada na Figura 4. Pode-se observar que ocorre um aumento na remoção com o aumento do pH até aproximadamente pH = 7,00 quando a remoção começa a diminuir. Este comportamento está de acordo com os resultados de pH do ponto de carga zero (pH_{PZC} = 7,20), que indicam que a adsorção de chumbo deve aumentar com o aumento do pH. Em baixos valores de pH os sítios de adsorção podem estar ocupados pelos íons H3O+, o que reduz as vacâncias para adsorção de chumbo (KUMAR, 2014), enquanto a diminuição da adsorção acima de pH = 7 pode ser atribuída à formação de hidróxidos de chumbo (KUMAR, 2014; NOVAIS, 2016). Para os experimentos posteriores, adotou-se o pH = 7,0 como parâmetro de controle.

3.6. Isotermas de Adsorção

A isoterma de adsorção de Pb(II) sobre cabomba verde para um tempo de contato de 24 horas, à temperatura ambiente e pH = 7,00 é mostrada na Figura 5.

Figura 5: Isoterma de adsorção de Pb(II) sobre cabomba verde. T = 298K, t = 24 horas, pH = 7,00.

A linearização das isotermas foi feita segundo os modelos de Langmuir e Freundlich e as figuras 6 e 7 mostram o resultado obtido. A isoterma de Langmuir e sua forma linearizada são descritas pelas equações 1 e 2, respectivamente. A isoterma de Freundlich e sua equação linearizada são representadas pelas equações 3 e 4, respectivamente.

Equação 1

$$\mathbf{Q}_{\mathbf{e}} = \frac{\mathbf{Q}_{\max}\mathbf{K}_{\mathrm{L}}\mathbf{C}_{\mathbf{e}}}{\mathbf{1} + \mathbf{K}_{\mathrm{L}}\mathbf{C}_{\mathbf{e}}}$$
Equação 2

$$\frac{\mathbf{C}_{\mathbf{e}}}{\mathbf{Q}_{\mathbf{e}}} = \frac{\mathbf{C}_{\mathbf{e}}}{\mathbf{Q}_{\max}} + \frac{\mathbf{1}}{\mathbf{K}_{\mathrm{L}}\mathbf{Q}_{\max}}$$

120

Figura 7: Linearização da isoterma de adsorção segundo o modelo de Freundlich.

 Tabela 2: Parâmetros das Isotermas de Langmuir e Freundlich para adsorção de Pb(II) sobre cabomba verde.

 Langmuir
 Freundlich

Q _{max} (mg.g ⁻¹)	K _L (L.mg ⁻¹)	R ²	K _F (L.mg ⁻¹)	n	R ²
0,18	14,16	0,9999	-	1,38	0,9894
Fonte: Autoria própria (2022).					

Apesar dos dois modelos apresentarem altos coeficientes de correlação com os dados experimentais, o modelo de Freundlich possui intersecção negativa, impossibilitando a

121

interpretação do valor (negativo) da constante de Freundlich. Desse modo, podemos concluir que o modelo que melhor descreve a adsorção de íons Pb(II) sobre cabomba verde é o modelo de Langmuir. A constante de Langmuir possui um valor alto, indicando que a adsorção é favorável, com capacidade máxima de 0,18 mg de Pb(II) por grama de adsorvente.

3.7. Estudos cinéticos

A adsorção de chumbo em cabomba verde foi estudada em função do tempo de contato para determinar o modelo cinético que descreve melhor o processo de adsorção. Os resultados de variação de quantidade adsorvida com o tempo e com as concentrações iniciais são mostrados na figura 8.

Figura 8: Variação da quantidade de chumbo adsorvida com o tempo de contato e com as concentrações iniciais. T = 298K, pH = 7,0.

Os resultados da Figura 8 mostram que a adsorção de chumbo atinge o equilíbrio em cerca de 24 horas para todas as concentrações iniciais. A quantidade adsorvida aumenta com o aumento da concentração inicial. A cinética deste processo de adsorção foi estudada pelos modelos de pseudo-primeira ordem e pseudo-segunda ordem.

A equação 5 mostra o modelo de pseudo-primeira ordem proposto por Lagergren em sua forma linear (HO, 2003).

Equação 5
$$\log(Q_e - Q_t) = \log Q_e - \frac{k_{ad}}{2,303}t$$

Onde: Qe e Qt são as quantidades adsorvidas no equilíbrio e no tempo t (mg/g); kad é a constante de velocidade de adsorção (min-1) e t é o tempo (min).

Ho *et al* (2003, 2004), propuseram que o modelo de pseudo-segunda ordem descreve melhor a adsorção de corantes sobre materiais de baixo custo. A equação 6 apresenta a forma linear deste modelo proposta por Ho *et al.* (2004).

Equação 6

$$\frac{t}{Q_t} = \frac{1}{k_2 \cdot Q_e^2} + \frac{1}{Q_e} \cdot t$$

Onde Qe e Qt são as quantidades adsorvidas (mg.g-1) no equilíbrio e no tempo t (min) e k é a constante de velocidade de pseudo-segunda ordem (g.mg-1.min-1).

A figura 9 mostra o gráfico obtido para modelagem de pseudo-primeira ordem, à temperatura ambiente.

Figura 9: Plot de pseudo-primeira ordem para adsorção de negro de eriocromo sobre casca de maracujá. Ci = 100 mg/L, T = 298K, pH = 6,8.

Fonte: Autoria própria (2022).

Os plots lineares de log10(Qe – Qt) versus t apresentaram coeficientes de correlação linear baixos, indicando que este modelo não descreve a cinética de adsorção do chumbo sobre a cabomba verde. Mesmo nas amostras em que o coeficiente de correlação linear se aproximou da unidade o cálculo da quantidade adsorvida no equilíbrio (Qe) apresentou resultados muito distantes dos obtidos experimentalmente, confirmando que o modelo de pseudo-primeira ordem não é adequado para descrever os resultados obtidos.

A figura 10 mostra o gráfico obtido para modelagem de pseudo segunda ordem para adsorção de chumbo sobre cabomba verde à temperatura ambiente.

Figura 10: Plot de pseudo-segunda ordem para adsorção de chumbo sobre cabomba verde, T = 298K, pH = 6.8.

Fonte: Autoria própria (2022).

Os resultados obtidos para os coeficientes de correlação foram maiores que 0,999 para todas as amostras testadas, indicando que o modelo de pseudo-segunda ordem descreve bem a adsorção de chumbo sobre cabomba verde. O modelo de pseudo-segunda ordem assume que pode existir troca iônica entre o adsorvato e o adsorvente. No entanto, os dados termodinâmicos, mostrados na próxima seção, não indicam que processos químicos estejam ocorrendo neste sistema. Assim, o modelo de pseudo-segunda ordem é uma boa descrição matemática do processo, mas não dá indicação sobre o mecanismo de adsorção que está ocorrendo.

A Tabela 3 mostra os parâmetros obtidos para essa modelagem.

298K, pH = 7,0.					
MODELO CINÉTICO	PARÂMETROS	Ci (mg/L)			
	-	0,1	0,2	0,5	1,0
PSEUDO-PRIMEIRA	k_{ad} (min ⁻¹) x 10 ³	0,20	2,1	3,7	3,6
ORDEM	$Q_e (mg/g)$	0,002	0,004	0,072	0,058
	$Q_e EXP (mg/g)$	0,0129	0,0221	0,0615	0,1106
	\mathbb{R}^2	0,6959	0,9962	0,9902	0,9944
PSEUDO-SEGUNDA	k2 (g/mg.min) x	1,10	1,72	0,19	0,14
ORDEM	10^{2}				
	Q _e (mg/g)	0,0130	0,0223	0,0635	0,1134
	QeEXP (mg/g)	0,0129	0,0221	0,0615	0,1134
Fonte: Autoria própria (2022).					

Tabela 3: Parâmetros obtidos para a modelagem cinética da adsorção de chumbo sobre cabomba verde T = 298K, pH = 7,0.

O mecanismo do processo de adsorção nem sempre fica claro a partir dos modelos utilizados neste trabalho. Além disso, a adsorção em fase líquida está sempre sujeita a etapas limitantes da velocidade, como a difusão no filme e a difusão intra-partícula. Para estudar a etapa limitante da velocidade deste processo, utilizou-se o modelo de Weber e Morris, como descrito por Tan (2017). A equação matemática do modelo está representada na equação 7:

Equação 7 $Q_t = k_i \sqrt{t} + c$

onde ki é a constante de velocidade de difusão intrapartícula (mol.g-1.min-1/2). Um gráfico de Qt versus t1/2 deve ser uma linha reta cuja inclinação dá o valor da constante de difusão. Se c $\neq 0$ a difusão intrapartícula não é o único processo controlando a velocidade.

A Figura 11 mostra os gráficos de Weber-Morris para o processo de adsorção de chumbo sobre cabomba verde, em pH = 7,0 e temperatura ambiente (298K).

Figura 11: Diagramas de Weber-Morris para adsorção de Pb(II) sobre cabomba verde, T = 298K, pH = 7,0.

Fonte: Autoria própria (2022).

Pode-se observar que os gráficos são lineares, mas não passam pela origem, indicando que a difusão intrapartícula não é o principal fator determinante da velocidade de adsorção. Para concentrações mais baixas observa-se apenas uma etapa de difusão, indicando que apenas a difusão na solução está influenciando a velocidade de adsorção. Para as concentrações mais altas, no entanto, os gráficos mostram duas etapas de difusão, que podem ser atribuídas a difusão na solução e difusão no filme líquido que rodeia a partícula. O conjunto de resultados mostra que a etapa limitante do processo provavelmente foi a difusão na solução.

Os estudos cinéticos, portanto, indicam que a cinética do processo pode ser descrita matematicamente pelo modelo de pseudo-segunda ordem, mas que as limitações difusionais na solução, que podem ser devidas a velocidade de agitação utilizada nos experimentos, estão influenciando no processo.

3.8. Efeito da temperatura e variáveis termodinâmicas

A Figura 12 mostra as isotermas de adsorção de chumbo sobre cabomba verde nas temperaturas estudadas nesse trabalho.

Figura 12: Isotermas de adsorção nas temperaturas utilizadas neste trabalho.

Fonte: Autoria própria (2022).

A quantidade adsorvida decresce com o aumento da temperatura, como esperado para um processo exotérmico. Os valores dos parâmetros termodinâmicos, entalpia, entropia e energia livre de Gibbs, bem como as constantes de equilíbrio foram determinados utilizandose as equações 8 a 10 e estão resumidos na Tabela 5.

Equação 8
$$\log K_{\rm C} = -\frac{\Delta H^0}{2,303 {\rm RT}} + \frac{\Delta S^0}{2,303 {\rm R}}$$
Equação 9 $\Delta G^0 = -{\rm RT} {\rm ln} K_{\rm C}$ Equação 10 $K_{\rm C} = \frac{C_{\rm ads}}{C_{\rm e}}$

Tabela 5: Parâmetros termodinâmicos obtidos para a adsorção de chumbo sobre cabomba verde Ci = 100 mg/L

AMOSTRA	T (°K)	Kc	ΔHº (kJ/mol)	ΔS ^o (J/K.mol)	∆Gº (kJ/mol)
cabomba	298	26,46	-54,73	-163,75	-8,11
	313	9,98	_		-6,00
	328	2,93	_		-2,93
	343	1,40	_		-0,95

Fonte: Autoria própria (2022).

Os resultados dos estudos termodinâmicos indicam que o processo de adsorção é exotérmico para todas as amostras testadas, suportando os resultados de diminuição de capacidade de adsorção com o aumento da temperatura mostrado na Figura 12. O processo ocorre com diminuição de entropia, o que já era esperado visto que as moléculas estão mais organizadas quando adsorvidas sobre a superfície do que em solução.

Os resultados obtidos para energia livre de Gibbs indicam que a adsorção de chumbo sobre cabomba verde é espontâneo em todas as temperaturas testadas, se tornando cada vez menos espontâneo a medida em que a temperatura aumenta. Esse resultado confirma a suposição de que o processo é principalmente adsorção física.

4. CONSIDERAÇÕES FINAIS

A cabomba verde se mostrou um adsorvente promissor para o cátion Pb(II), com capacidade de adsorção de Langmuir de 0,18 mg de Pb(II) por grama de adsorvente, uma capacidade muito acima dos limites permitidos para a presença de chumbo em água.

A cinética do processo pode ser descrita matematicamente pela equação de pseudosegunda ordem e os estudos de difusão mostraram que a difusão na solução está influenciando nos resultados, sendo a etapa limitante da velocidade do processo.

A adsorção de chumbo sobre cabomba verde é um processo exotérmico, que ocorre com diminuição de entropia e as energias livres de Gibbs obtidas indicam que o processo é espontâneo em temperaturas próximas a ambiente (298 K). Os resultados termodinâmicos também indicam um processo de adsorção física.

REFERÊNCIAS

ALMEIDA-FUNO, I. C.; PINHEIRO, C. U.; MONTELES, J. S. Identificação de Tensores Ambientais nos Ecossistemas Aquáticos da Área de Proteção Ambiental (APA) da Baixada Maranhense. **Revista Brasileira de Agroecologia**, Porto Alegre, 5(1), Jan, 2010. Disponível em: https://revistas.aba-agroecologia.org.br/rbagroecologia/article/view/9794/6639. Acessado em: Abr. 2023.

AL-DEGS, Y. *et al.* Effect of carbon surface chemistry on the removal of reactive dyes from textile efluente. **Water Research.** 34 (3), 927-935, Fev, 2000. Diponível em: https://doi.org/10.1016/S0043-1354(99)00200-6. Acessado em: Abr. 2023.

BABEL, S.; KURNIAWAN, T. A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review, **Journal of Hazardous Materials**. 97 (1-3), 219-243, Fev 2003. https://doi.org/10.1016/S0304-3894(02)00263-7. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304389402002637. Acessado em: Abr. 2023.

BRANCO, S. M. Hidrobiologia Aplicada à Engenharia Sanitária (3 ed.), 1986, São Paulo: CETESB.

BRITO, S. M. *et al.* Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. **Journal of Hazardous Materials**. 174 (1–3), 84-92, Fev 2010. Disponível em: https://doi.org/10.1016/j.jhazmat.2009.09.020. Acessado em: Abr. 2023.

CEROVIC, L. S. *et al.* Point of zero charge of different carbides. **Colloids and Surfaces A: Physicochemical and Engineering Aspects**, 297 (1–3), 1-6, Abril 2007. Disponível em: https://doi.org/10.1016/j.colsurfa.2006.10.012. Acessado em: Abr. 2023.

ESPINOZA-QUIÑONES, F. R. *et al.* Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata. **Chemical Engineering Journal**. 150 (2-3), 316-322, Ago, 2009, https://doi.org/10.1016/j.cej.2009.01.004. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1385894709000060?via%3Dihub. Acessado em: Abr. 2023.

GHALI, L. *et al.* Effect of pre-treatment of Luffa fibres on the structural Properties. **Materials** Letters. 63 (1), 61-63, jan. 2009. Disponível em: https://doi.org/10.1016/j.matlet.2008.09.008. Acessado em: Abr. 2023.

HO, Y. S. Removal of copper ions from aqueous solution by tree fern. **Water Research** 37 (10), 2323-2330, Maio 2003. Disponível em: https://doi.org/10.1016/S0043-1354(03)00002-2. Acessado em: Abr. 2023.

HO, Y. S. Pseudo-Isotherms Using a Second Order Kinetic Expression Constant. Adsorption 10, 151-158, 2004. Disponível em: https://doi.org/10.1023/B:ADSO.0000039870.28835.09. Acessado em: Abr. 2023.

JACQUES, R. A. *et al.* Yellow passion-fruit shell as biosorbent to remove Cr(III) and Pb(II) from aqueous solution. **Separation and Purification Technology**. 57 (1), 193-198, Out 2007. https://doi.org/10.1016/j.seppur.2007.01.018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1383586607000615?via%3Dihub. Acessado em: Abr. 2023.

JESUS, T. B. de. *et al.* Avaliação da Potencialidade de Utilização de Espécies de Macrófitas como Acumuladoras de Metais Pesados. **Revista Virtual de Quimica** 7 (4). 1102-1118, Mai,2015. https://doi.org/10.5935/1984-6835.20150061. Disponível em: https://rvq.sbq.org.br/default.asp?ed=15. Acessado em: Abr. 2023.

KUMAR, P. S. Adsorption of lead (II) ions from simulated wastewater using natural waste: A kinetic, thermodynamic and equilibrium study. **Environmental Progress & Sutainable Energy** 33, 55, Fev. 2014. Disponível em: https://doi.org/10.1002/ep.11750. Acessado em: Abr. 2023.

LIMA, L. K. S. *et al.* Removal of Chromium from Wastewater Using Macrophytes Lemna Minor as Biosorbent. **Chemical Engineering Transactions.** 25, 303-308, abr 2011. https://doi.org/10.3303/CET1125051. Disponível em: https://www.cetjournal.it/index.php/cet/article/view/CET1125051. Acessado em: Abr. 2023.

MARTIN, A. R. *et al.* Caracterização química e estrutural de fibra de sisal da variedade Agave sisalana. **Polímeros**. 19 (1), 2009. Diponível em: https://doi.org/10.1590/S0104-14282009000100011. Acessado em: Abr. 2023.

MÓDENES, A. N. *et al.* Potencial de biossorção do zinco pela macrófita egeria densa. **Engenharia Sanitaria e Ambiental**.14, 465, dez, 2009. https://doi.org/10.1590/S1413-41522009000400006. Disponível em: https://www.scielo.br/j/esa/a/63X7Cj43Fz9XPK3pQrcTCKr/?lang=pt. Acessado em: Abr. 2023.

128

NOVAIS, R. M. *et al.* A. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. **Journal of Hazardous Materials**. 318, 631-640, Nov 2016. Disponível em: https://doi.org/10.1016/j.jhazmat.2016.07.059. Acessado em: Abr. 2023.

PARK, S. *et al.* Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. **Biotechnology for Biofuels and Bioproducts**. 3, 10,2010. Disponível em: https://doi.org/10.1186/1754-6834-3-10. Acessado em: Abr. 2023.

PATHAK, P. D.; MANDAVGANE, S. A.; KULKARNI, B. D. Characterizing fruit and vegetable peels as bioadsorbents. **Current Science**. 110 (11), p. 2114-2123 jun 2016. Disponível em: https://doi.org/10.18520/cs/v110/i11/2114-2123. Acessado em: Abr. 2023.

RAI, P. K. Seasonal monitoring of heavy metals and physicochemical characteristics in a lentic ecosystem of subtropical industrial region, India. **Environmental Monitoring and Assessment.** Jun. 2010, 165, 407-433. https://doi.org/10.1007/s10661-009-0956-z. Disponível em: https://link.springer.com/article/10.1007/s10661-009-0956-z. Acessado em: Abr. 2023.

SABA, B.; CHRISTY, A. D.; JABEEN, M. Kinetic and Enzymatic Decolorization of Industrial Dyes Utilizing Plant-Based Biosorbents: A Review. **Environmental Engineering Science**. 33(9), 601-614, Set, 2016. https://doi.org/10.1089/ees.2016.0038. Disponível em: https://www.liebertpub.com/doi/10.1089/ees.2016.0038. Acessado em: Abr. 2023.

SHABANI, N.; SAYADI, M. H. Evaluation of heavy metals accumulation by two emergent macrophytes from the polluted soil: an experimental study. **The Environmentalist**.32, 91-98, Mar, 2012. https://doi.org/10.1007/s10669-011-9376-z. Disponível em: https://link.springer.com/article/10.1007/s10669-011-9376-z. Acessado em: Abr. 2023.

SILVA, E. da.; SANTOS, P. S. dos.; GUILHERME, M. F. S. Lead in plants: a brief review of its effects, mechanisms toxicological and remediation. **AGRARIAN ACADEMY**, Centro Científico Conhecer - Goiânia, v.2, n.03; p. 1, 2015. http://dx.doi.org/10.18677/Agrarian_Academy_001. Disponível em: https://www.conhecer.org.br/Agrarian%20Academy/2015a.htm. Acessado em: Abr. 2023.

SILVA, J. E. da. *et al.* Estudo de Cinética e Equilíbrio de Adsorção Empregando a Casca do Coco Modificada Quimicamente para a Remoção de Pb(II) de Banho Sintético. **Revista Virtual de Química**. 10 (5), 1248-1262, Nov,2018. https://doi.org/10.21577/1984-6835.20180086. Disponível em: https://rvq.sbq.org.br/default.asp?ed=63. Acessado em: Abr. 2023.

SILVA, P. R. da; GONÇALVES, G. R.; FREITAS, J. C. Preparação, Caracterização e Avaliação na Gaseificação de Celuligninas de Bagaço de Cana e Casca de Arroz: Caso de Reaproveitamento de Resíduos Lignocelulósicos **Revista Virtual de Química**. 8 (5), 1262-1276, ago 2016. Disponível em: https://doi.org/10.21577/1984-6835.20160091. Acessado em: Abr. 2023.

TAN, K. L.; HAMEED, B. H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. **Journal of the Taiwan Institute of Chemical Engineers**. 74, 25-48, May 2017. Disponível em: https://doi.org/10.1016/j.jtice.2017.01.024. Acessado em: Abr. 2023.

TORRES, I. F. A. *et al.* Elementos traço e agrotóxicos em amostras de água, sedimento e mata ciliar coletadas no entorno do ribeirão da mata (mg). **Revista de Estudos Ambientais**, [S.I.],

v. 15, n. 1, p. 6-19, ago. 2014. ISSN 1983-1501. Disponível em: https://proxy.furb.br/ojs/index.php/rea/article/view/3922>. Acessado em: Abr. 2023.

TRINDADE, W. M.; HORN, A. H.; RIBEIRO, E. V. Concentrações de metais pesados em sedimentos do rio são francisco entre três marias e pirapora-mg: geoquímica e classificação de risco ambiental. **Geonomos**, 20(1), Jul 2012, https://doi.org/10.18285/geonomos.v20i1.28. Disponível em: https://periodicos.ufmg.br/index.php/revistageonomos/article/view/11729. Acessado em: Abr. 2023.

TRIPATHI, A.; RANJAN, R. J. Heavy Metal Removal from Wastewater Using Low Cost Adsorbents. **Journal of Bioremediation & Biodegradation**. 6, 315, Out, 2015. doi:10.4172/2155-6199.1000315. Disponível em: https://www.omicsonline.org/open-access/heavy-metal-removal-from-wastewater-using-low-cost-adsorbents-2155-6199-1000315.php?aid=62852. Acessado em: Abr. 2023.

TSERKI, V. *et al.* A study of the effect of acetylation and propionylation surface treatments on natural fibres. **Composites: Part A** 36 (8), 1110-1118, Ago, 2005. Disponível em: https://doi.org/10.1016/j.compositesa.2005.01.004. Acessado em: Abr. 2023.

WU, J. *et al.* Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China. **Water Resources Management**. 26, 3601–3618, Jun,2012. https://doi.org/10.1007/s11269-012-0093-2. Disponível em: https://link.springer.com/article/10.1007/s11269-012-0093-2. Acessado em: Abr. 2023.

YANG, G. H. *et al.* Characteristics of hemicellulose, cellulose and lignin pyrolysis. **Fuel.** 86 (12–13), 1781-1788, Ago 2007. Disponível em: https://doi.org/10.1016/j.fuel.2006.12.013. Acessado em: Abr. 2023.

